

Huanting Wang Curriculum Vitae

Email: schwa@leeds.ac.uk Personal Website: https://huantwang.github.io/

Education
10/2021 – 08/2025
(Expected date)

University of Leeds,
United Kingdom

Ph.D. in computer science
• 6 Publications
• School of Computing Full Scholarship (2 places)

09/2018 – 07/2021 Northwest University,
China (Tier 1A)

MSc in Software Engineering
• 4 Publications + 5 patents
• First Class Scholarships (top 5% students)

09/2014 – 07/2018 Chang'an University,
China (Tier 1A)

BSc in Software Engineering

Professional Experience
12/2024 - Present University of Leeds Research Fellow
08/2021 – 11/2021 Alibaba DAMO Academic Research Intern in LLM Group
07/2019 – 12/2019 Ant Group Software Engineer Intern in Security Group

Selected Publications
[1] SecureMind: A Framework for Benchmarking Large Language Models in Bug Detection and Repair,

H. Wang, D. Jacob, D. Kelly, Y. Elkhatib, J. Singer, Z. Wang,
Proceedings of the International Symposium on Memory Management (ISMM), 2025

[2] Enhancing Deployment-Time Predictive Model Robustness for Code Analysis and Optimization,

H. Wang, P. Lenihan, Z. Wang,
Proceedings of the International Symposium on Code Generation and Optimization (CGO), 2025

 Premier ACM conference in Compiler Optimization (CORE A)

Distinguished Paper Award!

[3] Combining Structured Static Code Information and Dynamic Symbolic Traces for Software Vulnerability
Prediction,
 H. Wang, Z. Tang, S. Chen, Jie. Wang, Y. Liu, H. Fang, C. Xia, Z. Wang,
 Proceedings of the International Conference on Software Engineering (ICSE), 2024
 Premier ACM conference in Software Engineering (CORE A*)
[4] Automating reinforcement learning architecture design for code optimization,
 H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather, Z. Wang,
 Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction (CC), 2022
 Premier ACM conference in parallel computing (CORE A)
[5] Combining Graph-based Learning with Automated Data Collection for Code Vulnerability Detection,
 H. Wang, G. Ye, Z. Tang, S.H. Tan, S. Huang, D. Fang, Y. Feng, L. Bian, Z. Wang,
 IEEE Transactions on Information Forensics and Security (TIFS), 2021

Flagship journal in Computer Security.
ESI Top 1% Highly Cited Paper!

Programming Skills
AI; Deep/Reinforcement Learning; Software Security; Code Optimization; Python; C++; Pytorch/Tensorflow;

Awards

2025 CGO Distinguished Paper Award; CGO Travel Grant

2024 AI SuperConnector Award

2023 MITACS Globalink Research Award;

Research Experience
My research experience lies in the code analysis (Software Security) and code optimization using machine
learning (ML) techniques. I have participated in the following projects during my MSc and PhD studies:

l Large Language Model for Software Security January 2025 - now
Large language models (LLMs) hold great promise for automating software vulnerability detection and repair,
but ensuring their correctness remains a challenge. We introduce “SecureMind”, an open-source framework
for evaluating LLMs in vulnerability detection and repair, with a focus on memory-related vulnerabilities. We
evaluate 10 representative LLMs on 16,000 test samples covering 8 types of vulnerabilities.

This work has led to one paper published in ISMM 2025 [1].

l Robust Machine Learning during Deployment Time April 2022 to Jan 2025
In recent years, ML has emerged as a powerful tool for assisting code analysis and optimization tasks. ML
models can be vulnerable to changes in the deployment environment. Even slight alterations in hardware or
application workloads can severely impact their accuracy.

We introduce “Prom” to enhance the robustness and performance of predictive models against such changes
during deployment. We applied Prom to 12 representative ML models, covering heterogeneous device
mapping, GPU thread coarsening, loop vectorization, source-code level bug detection and Tensor tuning.
Prom successfully identifies 90% (up to 100%) of mispredictions and enhances prediction performance in
operational environments through incremental learning.

This work has led to one paper published in CGO 2025 [2].

l Hybrid Learning-based Software Vulnerability Prediction December 2021 to Aug 2023
Deep Learning (DL) is increasingly employed for software bug and vulnerability detection, extracting
program representations from static code sources such as code texts. DL may face challenges from complex
code structures, redundant statements, and extensive execution paths, potentially reducing the performance.

We proposed using DL to learn program presentations by combining static source code information and
dynamic program execution traces. We have successfully uncovered more than 100 unique vulnerabilities
and yielded 36 new, unique CVE IDs and outperform 14 prior methods by providing higher accuracy.

This work has led to one paper published in ICSE 2024 [3].

l Automatic Reinforcement Learning Model Architecture Design July 2020 to Apr 2022
While programmers apply reinforcement learning (RL) to their domain, the first step is to design the RL
architecture for their tasks. However, expertise creates a barrier between programmers and RL.

We proposed an open-source framework for automating RL architecture search, simplifying RL integration
into compilers. We applied it to four optimization problems: image pipelines, neural network code generation,
code size reduction, and superoptimization. Experimental results demonstrate its superiority, improving
performance and accelerating deployment-stage search by an average of 1.75x (up to 100x).

This work has led to one paper published in CC 2022 [4]. Collaboration with Meta AI research lab.

l Deep Program Structure Modeling using Graph Neural Networks June 2019 to January 2021
DL is promising for code-related tasks like compiler optimization. An important factor is having the right
representation to characterize the model input for the given task. Existing approaches in the area typically
treat the program structure as a sequential sequence but fail to capitalize on the rich semantics of data and
control flow information, for which graphs are a proven representation structure.

We introduce a novel Graph Neural Network (GNN) approach to learn rich code representations from
program graphs, effectively capturing diverse code relationships—including data flow and control flow—that
are critical for downstream tasks. We apply our method to four classification tasks, and experimental results
consistently demonstrate its superiority over competing approaches.

This work has led to 3 papers published in IEEE TIFS[5], PACT 2020 and JISA.

